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The purpose of this article is to present
an unbiased comparison of three

approaches to estimating software devel-
opment costs. Rather than a single author
attempting to arrive at a middle of the
road, politically correct description of the
three approaches, this article presents the
comparison according to three individuals
who are at the heart of these major esti-
mating philosophies (from the horses’
mouths so to speak).

Origins and Evolution of
Software Models
This article prompted an enlightening trip
back into the fuzzy history of computer-
based software cost and schedule estimat-
ing methods and tools. It appears that the
origins are not that remote, and the meth-
ods appeared over a relatively short period
of time and have evolved in spurts and
starts since then. The first real contribu-
tion to the estimating technology hap-
pened in 1958 with the introduction of
the Norden staffing profile [1]. This pro-
file has been incorporated in many of the
estimating methodologies introduced
since then.

A flurry of software estimating meth-
ods was introduced beginning in the mid-
1970s and throughout the next decade.
The first publication of any significance
was presented by Ray Wolverton [2] of
TRW in 1974. Wolverton was a major
contributor to the development of the
Constructive Cost Model (COCOMO)
[3]. The second major contribution to the
evolution of software estimating tools was
the Doty Associates model [4], developed
for the U.S. Air Force in 1977. The period
from 1974 through 1981 brought most of
the software estimating models (tools) we
use today to the marketplace.

Each of these tools evolved at a gentle
pace (refined algorithms and drivers) until
about 1995, when significant changes
were made to many of the models.
COCOMO II, for example, had several
releases between 1995 and 1999. Sage,

released in 1995, is a major redefinition of
the 1979 Seer model. Cost Xpert, intro-
duced in 1996, is a major modification of
the COCOMO family line. It is amazing
that, in the 25 years elapsed since the first
wave of estimating tools, development
environments have changed so little that
these models and their predicted environ-
ments are still valid today.

Framework for Discussion
When we look at software estimating
models, they generally fall into one of
three classes: first-, second- or third-order
forms. This article compares three widely
used models using the three classes as a
framework for discussion and compari-
son.

First-Order Model
The first-order model is the most rudi-
mentary model class. The model is simply
a productivity constant, defining the pro-
duction capability of the development
organization in terms of arbitrary produc-
tion units multiplied by the software prod-
uct effective size to obtain the develop-
ment effort or cost. The production units
can be source lines of code (SLOC), func-
tion points (FPs), object points, use cases,
and a host of other units. For the purpose
of this discussion, we will use effective
source lines of code (ESLOC) as the pro-
duction measure, and person-hours per
ESLOC as the productivity measure. This
can be stated as follows:

Ed = CkSe (1)

where,

Ed is the development effort in person
hours (ph).
Ck is a productivity factor (ph/esloc).
Se is the number of ESLOC. 

The productivity factor is commonly
determined by the product type, historic
developer capability, or both as derived

from past projects. As simple as this equa-
tion is, it is widely used to produce high-
level, rough estimates. An expansion of
this form used as far back as the 1970s is:

Ed = Ck(Snew + 0.75Smodified + 0.2Sreused) ph (2)

Or it is a similar variation. The weakness
of this model is its insensitivity to the
magnitude of the effective product size.
Productivity is, or at least should be,
decreased for larger projects.

Second-Order Model
The second-order model compensates for
the productivity decrease in larger projects
by incorporating an entropy factor to
account for the productivity change. The
entropy effect demonstrates the impact of
a large number of communications paths
that are present in large development
teams. The number of paths is specified
by n(n-1)/2 where n is the number of
development personnel. The second-
order model becomes the following:

Ed = CkSß
e (3)

where,

ß is an entropy factor that accounts for
the productivity change as a function of
effective product size.

An entropy factor value of 1.0 repre-
sents no productivity change with size. An
entropy value of less than 1.0 shows a
productivity increase with size, and a value
greater than 1.0 represents a productivity
decrease with size. Entropy values of less
than 1.0 are inconsistent with historical
software data1. Most of the widely used
models in the 1980s (COCOMO embed-
ded mode, PRICE-S, REVIC, Seer, and
SLIM) used entropy values of approxi-
mately 1.2 for Department of Defense
projects.

The major weakness of this model is
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its inability to adjust the productivity fac-
tor to account for variations between pro-
jects in development environments. For
example, contractor A may have a more
efficient process than contractor B; how-
ever, contractor A may be using a devel-
opment team with less experience than
used in the historic productivity factor.
Different constraints may be present in
the current development than was present
in previous projects. In addition, using a
fixed, or calibrated, productivity factor
limits the model’s application across a
wide variety of environments.

Third-Order Model
The third-order model compensates for
the second-order model’s narrow applica-
bility by incorporating a set of environ-
ment factors to adjust the productivity
factor to fit a larger range of problems.
The form of this model is as follows:

Ed = Ck (
n

∏∏
i=1

fi)Sß
e (4)

where,

fi is the ith environment factor.
n is the number of environment factors. 

The number of environment factors
varies across estimating models, and is
typically between 15 and 32.

Using the generalized model set
defined in equations (1) through (4), we
have a framework for comparing the defi-
nition and features of the software esti-
mating models. Three model types are
described and compared in the following
sections of this article: (1) models evolv-
ing from the 1979 Seer model developed
and described by Dr. Randall Jensen, (2)
models evolving from the COCOMO
model described by William Roetzheim,
and (3) the SLIM model developed and
described by Lawrence Putnam, Sr.

Sage/Seer Effort and Schedule
Calculations
Software development involves three
important elements: people, a process, and
a product. The people element describes
management approach and style as well as
personnel attributes, including capability,
motivation, and communication effective-

ness. Process represents the software
development approach, tools, practices,
and life-cycle definition. The product
attributes include project-imposed con-
straints such as development standard,
memory and time constraints, and securi-
ty issues.

Software development is the most
communication-intensive of all engineer-
ing processes. This unique software
process characteristic suggests significant
productivity gains are more likely to be
realized through communication improve-
ment, rather than through technology.
Communication effectiveness is deter-
mined by organizational structure, man-
agement approach, and development envi-
ronment. The Jensen model [5], and its
implementations, embodies the impacts of
the three important elements in software
development cost and schedule estimates.

This section of the article discusses
the underlying theory of a line of software
cost and schedule estimating tools that
evolved from the Jensen software model
[6] at Hughes Aircraft Company’s Space
and Communications Group in 1979. The
original model implementation was called
Seer (not an acronym), a name later con-
verted to the acronym SEER-SEM
(Software Evaluation and Estimation of
Resources-Software Estimating Model) [7]
and trademarked by Galorath Associates,
Inc. (GAI) in 1990. The Seer concepts
were influenced by Lawrence Putnam’s
work [8] published in 1976 and the Doty
Associates [9] estimating model published
in 1977. The Seer model was derived from
the U.S. Army data used by Putnam to
develop SLIM, but with a different inter-
pretation of the data itself.

The first major update to the Jensen
model came in 1995 (Jensen II) with the
addition of project management and per-
sonnel characteristics effects to the model.
The impacts of motivation, management
style, and teaming on productivity have
long been suspected, but until 1995 the
data to support the alleged behavior was
simply insufficient to make credible model
changes. These changes were implement-
ed in the Software Engineering, Inc., Sage
[10] software estimating system. For the
sake of brevity, the Jensen model (I and
II) will be referred to as Sage throughout

this discussion. The following discussion
applies to all descendants of the original
Jensen estimating model. The fundamen-
tal equations are the following:

Se = Cte √KTd (5)

and

D = 
K__

T3
d

(6)

where,

Cte is the effective technology constant of
the development activity.
K is the total life-cycle effort in person-
years (py) of the software development
starting with the software requirements
review through the software’s end of life. 
Td is the software product development
time in years.
D is the product complexity rating.

Equations (5) and (6) solved simulta-
neously provide both schedule and effort
estimates in one calculation with the rela-
tionship between effort and schedule
linked by the product complexity. This
approach is unique to the Jensen and
Putnam models.

The parameter D is the same as the
Difficulty parameter discovered by Putnam.
This explains the use of D to describe
what the Jensen model refers to as com-
plexity.

Development effort is defined by

Ed = 0.3945K

where,

Ed is the development effort in py through
the final qualification test.

The Sage software development effort
equation is an implementation of the
third-order model discussed in the intro-
duction to the model comparison even
though it is not immediately apparent.
Combining equations (5) and (6), we find
the following:

Ed = 
18,797D0.4 

C1.2
te

S1.2
e person months (pm) (7)

The ugly part of equation (7) preced-
ing the effective size element comprises
the productivity factor of the third order
model. The effective technology constant
Cte contains two components: (1) the basic
technology constant Ctb representing the
development organization’s raw capability;
that is, capability independent of the con-
straints imposed by a specific develop-
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Definition Highly
motivated
AND
experienced
team
organization

Highly
motivated
OR
experienced
team
organization

Traditional
software
development
organization

Poorly
motivated
OR non-
associative
organization

Poorly
motivated
AND non-
associative
organization

Relative cost impact 0.71 0.86 1.00 1.19 1.46

Table 1: Sage Analyst Capability Ratings

Figure 1: Paul Masson Rule
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ment, and (2) the impacts of 24 environ-
ment factors/constraints. The Cte value is
obtained from the following:

Cte =   
Ctb

24

¹
i=1

fi (8)

where,

Ctb represents the basic technology con-
stant.
fi is the ith product-impacted environment
factor.

The Ctb value can be anywhere between
2,000 and 20,000 with a normal range
between 5,500 and 7,500. The highest
value observed from available data at this
time is about 8,635. Higher values obvi-
ously imply higher productivity and effi-
ciency. Theoretical values of Cte range
from 0 through 20,000. The practical
upper Cte limit is defined by an organiza-
tion’s  rating. The practical lower Cte

bound is about 500 for a less-than-aver-
age organization and severe product con-
straints.

The relative cost impact of the analyst
capability rating for Sage is shown in Table
1 as an example of one of the 24 envi-
ronment factors.

The product development time Td is
the minimum development time as can be
seen from the Paul Masson cost-time rela-
tionship shown in Figure 1. The Paul
Masson Point represents the minimum
development time that can be achieved
with a specified size, environment, and
complexity. By attempting to reduce the
schedule below the minimum time, the
cost will increase and the schedule will
also increase as described by Brooks Law
[11]: “Adding people to a late software
project makes it later.” Sage computes the
minimum development schedule as a
default.

The region shown by the double-head-
ed arrow is represented as a square-law
relationship in the model between cost
and schedule, or c = KT2

d. At first glance it
seems that a longer schedule should
equate to higher cost. By explaining the
phenomenon in two logical steps, the pro-
ductivity gain over the region becomes
clear. A longer schedule requires a smaller
development team. A smaller team is
more efficient; thus, productivity
improves and the cost decreases. This
phenomenon applies until the productivi-
ty gain is eaten up by fixed costs.

As an example of the effort and
schedule predicted by Sage, let us assume
the following development project para-

meters: The product is a satellite mission
operations system (application with signif-
icant logical complexity with some
changes to the underlying operating sys-
tem) consisting of 59,400 new SLOC. A
basic technology rating of 7,606 places
the developer at the upper end of the typ-
ical capability range. The project environ-
ment constraints, including the Institute
of Electrical and Electronics Engineers
Standard 12207 development standard,
reduce the effective technology rating to
2,624. The third-order equation form of
equation (7) reduces to Ed = 4.007S1.2

e   . The
results are tabulated in Table 2.

The minimum development schedule,
which is simultaneously calculated in
equation (5), is approximately 25 months.

Quantitative Software
Management View of Software
Estimating and Productivity
Measurement
Productivity measurement is used to:
1. Tune estimating systems.
2. Baseline and measure progress in soft-

ware development.
But what is productivity? My answer is:

It is not SLOC/PM or FP/PM. This is the
traditional view from economic theory –
output/input.

The software industry has 35 years of
experience that shows that this ratio
works poorly as a productivity metric. At
Quantitative Software Management
(QSM), we have learned why it does not
work: because it ignores schedule, and
software development is very sensitive to
schedule. A vast amount of our 27-year
collection of data, some 6,600 completed
systems, coupled with empirical analysis
shows that schedule is the most impor-
tant factor in estimating relationships and
must be dealt with explicitly. If schedule
is not so recognized and dealt with, then
it will assert itself implicitly and cause
much grief. By this, I mean both time and
effort must be included multiplicatively in
an expression for a good software algo-
rithm. We have found this to be of the
conceptual form:

Amount of function = Effort * 
Schedule * Process Productivity     (9)

where,

Effort and Schedule have exponents.
Specifically,

Size = (Effort/ßeta)1/3 Schedule4/3 Process
Productivity Parameter        (10)

where,

Size is the size in SLOC, or other mea-
sure of amount of function.
Effort is the amount of development effort
in py.
ßeta is a special skills factor that varies
as a function of size from 0.16 to 0.39.
ßeta has the effect of reducing process
productivity, for estimating purposes, as
the need for integration, testing, quality
assurance, documentation, and manage-
ment skills grows with increased com-
plexity resulting from the increase in size.
Schedule is the development time in
years.
Process Productivity Parameter is the
productivity number that we use to tune
the model to the capability of the organi-
zation and the difficulty of the application.
We do this by calibration as explained in
the next section. The theoretical range of
values is from 610 to 1,346,269. The
range of values seen in practice across
all application types is 1,974 to 121,393
and varies exponentially.

Estimating and Tuning Models
All models need tuning to moderate the
productivity adjusting factor.
• Some models use effort multipliers or

modifiers.
• I have found that we can use the soft-

ware equation to calibrate our estimat-
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ing algorithm. This calibration process
is far more accurate than intelligent
guesses of the settings for effort mul-
tipliers because it is based on real data
from the development organization.
All we need to do is to rearrange the
software equation into this form:

Process Productivity Parameter = 
Size / ((Effort/ßeta)1/3 (Schedule4/3))  (11)

From historic projects we know the
size (SLOC, FPs, etc.), effort (py) and
schedule (years). Then just put in a consis-
tent set of historic numbers and we can
calculate a Process Productivity
Parameter. This works well. Note that the
expression for Process Productivity
Parameter includes schedule and that it is
multiplicatively tied to effort. This expres-
sion is our definition of software produc-
tivity.

This software equation has two vari-
ables that we want to solve for: schedule
and effort. That means we have to have
another equation to get a solution in the
form of a schedule-effort pair. The sec-
ond equation may be in the form of a
constraint like maximum budget for the
project (Maximum Development Effort =
Maximum Cost/$Average Burdened
Labor Rate), or, Maximum Schedule =
Maximum Development Time in years.
There are a number of other constraints
that can be used such as peak manpower,
or maximum manpower buildup rate
(defined as Difficulty in Randall Jensen’s

preceding section).

Example of an Estimate
Here is a simple example: We need an esti-
mate for a Global Positioning System nav-
igation system for an air-launched, land-
attack missile. We have completed the
high-level design phase. Estimated size is
40,000 C++ SLOC; Process Productivity
Parameter for this class of work (real time
avionic system) is 3,194 [taken from Table
14.8, in 12], ßeta = 0.34 [taken from Table
14.4, in 13]. We have to deliver the system
to the customer for operational service in
two years (24 months from the end of
high-level design) The fully burdened con-
tractor labor rate is $200,000 per person-
year. Substituting in the software equation
and solving for effort, we have the follow-
ing:

40,000 = (Effort/0.34)1/3 24/3 3,194
Effort = 41.74 PY (Approximately 500.9

pm)
Cost = $200,000/ PY * 41.74 PY

= $8.35 million

Observations Concerning Effort
Multipliers/Moderators
Many estimating systems use a family of
adjusting factors to try to tune their pro-
ductivity constant. Between 15 and 25 of
these tweekers are typical. The values are
picked from a scale centered on 1.0 that
increase or decrease the Productivity con-
stant. This process does moderate the
baseline productivity value.

Unfortunately, it is highly subjective –
dependent upon the judgment of the
practitioner. It is not consistent or repro-
ducible from person to person and hence
it introduces considerable uncertainly
into the estimate that follows.

At QSM, we use a family of tweekers
for tools and methods, technical com-
plexity of the project, competence, expe-
rience, and skill of the development
team. This list is similar to most other
estimating systems. But we use it only as
a secondary technique for those organiza-
tions that truly have no historic data. The
notion of calibration from historic data is
much more accurate and powerful
because it captures the real capability and
character of the development organiza-
tion in a single number – the Process
Productivity Parameter in the software
equation. This single number is unam-
biguous and consistent; there is no sub-
jectivity involved.

Benchmarking
One of the nice things about being able
to substitute your historical data into the
software equation is that you can calculate
an unambiguous number that can be used
for benchmarking. We transform the
Process Productivity into a linear scale
and call that a Productivity Index (PI). If
we collect a homogeneous set of data
from a development organization and cal-
culate the PI for each project, we see a
fairly normal distribution with a central
tendency.

The central tendency represents our
current average PI. If we keep track of all
our projects over time and if we are doing
process improvement (trying to move up
the SEI scale) then we will see an increase
in the PI over time. Often we can plot the
PI behavior over time and pick up the
trend. Moreover, this graphical approach
makes it easy to compare organizations
doing similar types of work. Extending
this thinking a little bit provides the abili-
ty to quantitatively compare the real capa-
bility of bidders on a software develop-
ment contract. This comparison process
takes a lot of guesswork out of trying to
determine the real capability of vendors.

The benchmarking idea can be
extended easily to show performance
capabilities of the development organiza-
tion. The idea is to take a fairly large body
of contemporaneous historic data from
the same industry sector, then generate
some trend lines plots of the generic
form: management metric (schedule,
effort, staffing, defects, etc.) versus size
(SLOC, FPs, objects, etc.). Next, superim-
pose data points from the development

Figure 2: Trend Lines Plots



organization being measured on top of
these trend lines and see how they position
(high or low) compared with the industry
average trend line at the appropriate size.
For example, if your data shows a pattern
of falling below the average line for effort,
schedule, and defects you are a more effec-
tive producer (high productivity develop-
er). Almost invariably your PI and Mean
Time to Defect (MTTD) will be higher as
well. This means you can unambiguously
and quantitatively measure productivity.
After nearly 30 years of experience doing
it, we know it works consistently and well.
An example of such plots is shown in
Figure 2.

Cost Xpert Effort and
Schedule Calculations
Algorithmically, Cost Xpert started with
the COCOMO models, added Revised
Intermediate COCOMO (REVIC) exten-
sions, and then layered functionality on
top of this base. The core approach of
Cost Xpert is as follows:
1. Define scope using various measures

of size (e.g., SLOC, FPs, class-method
points, user stories, many others) for
new development, reused code, and
commercial off-the-shelf (COTS)
components).

2. Use scope and a variety of adjusting
factors (addressed below) to calculate
effort.

3. Use effort to calculate optimal sched-
ule.

4. Feedback deviations from the optimal
schedule to adjust effort, if necessary.

First-Order Modeling in Cost Xpert
First order modeling involves linear calcu-
lations of effort using a productivity con-
stant:

Effort = Productivity * Size (12)

In Cost Xpert, all sizing metrics
(SLOC, FPs, class-method points, user
stories, etc.) and development stage (new,
reused, COTS) are normalized to a SLOC
equivalent. This SLOC equivalent is
defined such that it is valid for estimating
effort, although in some situations it may
not accurately represent physical lines of
code (for example, in environments where
much of the code is auto-generated). In
other words, although it once represented
physical lines of code calculated using an
approach called backfiring, and although
that relationship is still true for older
development environments, with newer
environments it has become more of an
estimating size proxy.

COCOMO and REVIC use(d) rela-
tively small databases of projects and have
a correspondingly small universe of pro-
ductivity numbers. For example, COCO-
MO II uses the value 2.94 person-months
per thousand SLOC (KSLOC) [14].
Commercial vendors, including the Cost
Xpert Group, are able to maintain much
larger databases of projects and hence can
segment those databases into a finer gran-
ularity of project classes, each with a cor-
responding productivity number.

Cost Xpert uses a project type variable
to denote the nature of the project (e.g.,
military, commercial, and internet) and set
the coefficient for given historic database
segments. Actual numbers for these sam-
ple project classes are shown in Table 3
[15]. The productivity number multiplied
by KSLOC yields the first order effort in
person-months.

However, Cost Xpert Group research
has determined that there are additional
sources of variation across projects and
project domains (see the Third-Order
Modeling section for examples). Our cali-
brations account for the additional
sources of variation and therefore pro-
duce different coefficients for given pro-
ject classes than the models with reduced
factor sets. The overall net productivity in
Cost Xpert thus accounts for second-
order and third-order modeling described
in the following sections.

Second-Order Modeling in Cost
Xpert
Second-order modeling in Cost Xpert
involves adjusting the productivity to
allow for economies or diseconomies of
scale. An economy of scale indicates that
the productivity goes up as the scope goes
up. For example, you would expect that it
is cheaper per yard to install 100,000 yards
of carpeting than 1,000 yards. A disecon-
omy of scale indicates that the productiv-
ity goes down as the scope goes up. In
software, we are dealing with disec-
onomies (larger projects are less efficient).
This is modeled by raising the size to a
power, with a power greater than 1.0
increasing the apparent scope, and thereby
effort, with increasing project size. The
second-order model looks like this:

Effort = Productivity Factor * 
SizeScaling Factor            (13)

Table 4 shows some scaling factors by
project type.

Third-Order Modeling in Cost Xpert
Third-order modeling in Cost Xpert
involves adjusting the productivity and

scaling factors by project-specific vari-
ables. Cost Xpert uses 32 variables, called
environment variables (E) to adjust the
productivity number up or down, and five
variables, called scaling variables (S) to
adjust the scaling factor up or down. Each
variable is set to a value ranging from very
low to extremely high using defined crite-
ria for each setting. Many of these vari-
ables will typically be fixed at a given value
for an organization, with only a handful
actually varying from project to project.
The total productivity factor adjustment
(PFA) is the product of the individual pro-
ductivity factor values.

PFA = ∏∏ E  (14)

Table 5 (see page 28) shows some sam-
ple environmental variables and the resul-
tant PFAs as a sample of how this works.

The higher the number, the more
effort required to deliver the same
KSLOC, so in the Table 5 sample the
commercial product would require less
effort per KSLOC than the military pro-
ject.

Additionally, Cost Xpert has intro-
duced different types of linear factors
for important sources of effort variation.
We find that much of the variance
between project classes (e.g., military ver-
sus commercial) can be accounted for by
the life cycles and standards typically
employed. We have introduced the fol-
lowing factors:
• Project Life Cycle: The life cycle

(template of activities, or work break-
down structure) used for develop-
ment).

• Project Standard: The deliverables
(engineering specifications, or arti-
facts) produced during development.
These factors are rated by selecting

named life cycles and standards, which are
different than rating the standard environ-
mental variables. In addition to adjusting

Software Estimating Models:Three Viewpoints

February 2006 www.stsc.hill.af.mil 27

Project Type Productivity Factor
(pm/KSLOC)

Military 3.97

Commercial 2.40

Internet 2.51

Table 3: Productivity Factors

Project Type Scaling Factor

Military, Complex 1.197

Military, Average 1.120

Military, Simple 1.054

Commercial 1.054

Table 4: Scaling Factors for Various Project Types

Required Reliability

(E)

Multi-Site

Development (E)

Security

Classification (E)

Net

Productivity

(PFA)

Military Very High 1.26 Nominal 1.00 High 1.10 1.386

Commercial Nominal 1.00 Very High 0.86 Nominal 1.00 0.86

Table 5: Sample Productivity Factor Adjustments

Life Cycle and

Multiplier

Standard and

Multiplier

Net

Productivity

Sample 1 Waterfall 1.01 Military-498 1.34 1.35

Sample 2 RAD 0.91 RAD 0.51 0.46

Project Type ß

Military 3.80 0.378

α

Commerical 2.50 0.3348
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Required Reliability

(E)

Multi-Site

Development (E)

Security

Classification (E)

Net

Productivity

(PFA)

Military Very High 1.26 Nominal 1.00 High 1.10 1.386

Commercial Nominal 1.00 Very High 0.86 Nominal 1.00 0.86

Table 5: Sample Productivity Factor Adjustments

Life Cycle and

Multiplier

Standard and

Multiplier

Net

Productivity

Sample 1 Waterfall 1.01 Military-498 1.34 1.35

Sample 2 RAD 0.91 RAD 0.51 0.46

Project Type ß

Military 3.80 0.378

α

Commerical 2.50 0.3348

Table 4: Scaling Factors for Various Project
Types



effort, the life cycle and standard are used
to create specific detailed project plans
and page size estimates. They are also used
in our defect model. Examples using actu-
al numbers for sample projects are shown
in Table 6, where RAD is rapid application
design. These two samples could repre-
sent military and commercial projects
respectively.

The relative productivity difference
between the samples due to these two fac-
tors would be 1.35/.46 = 2.9 or 290%.

The five scaling variables (S) (not
shown) work in a somewhat analogous
manner, but the five factors are summed
to adjust the exponential factor that
applies to the diseconomy of scale. The
total third-order formula is then the fol-
lowing:

Effort = ∏∏ E * P * KSLOCScaling Factor + (∑s/5) (15)

where,

Effort is the effort in pm.
E are the various environmental factors.
P is the productivity factor (which is fur-
ther broken down into a project type, life
cycle, and standard).
KSLOC is the SLOC equivalent in thou-
sands.
S are the five scaling factor adjustments.
ScaleFactor is the default scaling factor
for this project type.

If we use the military productivity factor
from Table 3, military-complex from
Table 4, the military PF adjustment from
Table 5, and the life cycle and standard
adjustments for sample 1 in Table 6, the
equation simplifies to:

Effort = 3.97 * 1.386 * 1.35 * 
KSLOC(1.197 + (∑s/5) ) (16)

Effort = 7.43 * KSLOC(1.197 + (∑s/5) )

Calculating Schedule and Adjusting
for Schedule Deviations
In Cost Xpert, the optimal schedule is dri-
ven by the calculated effort. The schedule
formula is of the form:

Schedule = ∝∝ * Effortß (17)

where,

Schedule is the schedule in calendar
months.
∝∝ is a linear constant.
ß is an exponential constant. 

Table 7 shows a couple of sample values.
Accelerating a project from this calcu-

lated schedule results in inefficiencies that
then lower productivity and increase
effort. Cost Xpert handles this schedule
acceleration adjustment to productivity
through a table lookup and interpolation
between points in the table.

Summary and Conclusions
The three model implementations
described in this article represent the
majority of the estimating approaches
available to the estimator today. Our intent
in this article is not to advocate a single
software estimating approach or tool, but
is to expose you, the reader, to the mind-
sets incorporated in the more widely used
approaches available today.u
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Note
1. This is a good place to point out a

major difference between software and
almost any other manufactured prod-
uct. In other estimating areas, a large
number of products improves produc-
tivity through the ability to spread
costs over a large sample and reduce
learning curve effects. The software
product is but a single production item
that becomes more complex to man-
age and develop as the effective size
increases.
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Project Type ß
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LETTER TO THE EDITOR

Dear CrossTalk Editor,

In the December 2005 issue, the article “Agile Software
Development for the Entire Project” by Granville Miller,
Microsoft, describes how the agile process in MSF can make the
agile described in the Agile Manifesto <www.agile
manifesto.org> much easier to implement without all of those
difficult changes that many others have experienced. He
describes how these reflect the fine engineering practices at
Microsoft that have led the MSF version of agile to already be
a year late.

It has taken more than 20 years for parts of the American
manufacturing industry to adopt lean thinking. Agile, which has
many parallels to lean manufacturing, will also take a lot of
effort and time. Change is always an effort, and only the dra-
matic benefits of agile make it worthwhile. Efforts by people
like Granville Miller to water down agile by redefining the intent

do not help. Efforts that add more process miss the point;
process is defined by self-managing teams within frameworks.
Decisions are made by these teams working closely with cus-
tomers to maximize benefit and optimize results.

At the start of the agile movement, we were warned that the
larger commercial interests would attempt to water it down to
fit their existing tools. We should expect to see other similar fits
such as from IBM (through RUP in the Eclipse Foundation)
and others. The refinements suggested by Granville Miller do a
disservice to everyone working on agile.

Ken Schwaber
Signatory to the Agile Manifesto

Founder of the Agile Alliance
Co-Author of the Scrum Agile process
ken.schwaber@controlchaos.com


